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We consider a supramolecular diblock copolymer melt in which two homopolymers of different
species can reversibly bond at terminal binding sites to form a diblock copolymer. The grand canon-
ical ensemble is particularly convenient for formulating field-theoretic models of supramolecular as-
sembly because the chemical equilibrium of bonding reactions impose constraints on the chemical
potentials of the polymer species. Unlike the analogous model for a three component blend of A
and B homopolymers with an irreversibly bonded AB diblock copolymer, both χN and N appear
as independent parameters, where χ is the Flory interaction parameter and N is the length of the
diblock copolymer. In addition, an extra parameter characterizes the free energy of forming a bond.
Analytic methods and numerical self-consistent field theory are used to calculate the phase diagram
in the mean-field approximation. For symmetric systems with equal volume fractions and chain
lengths of the two homopolymers, we predict re-entrant behavior upon cooling in narrow parameter
ranges for both disordered and lamellar phases. In the case of the lamellar phase, we find re-entrant
behavior in which the intermediate phase is either disordered or macrophase separated. We explain
this behavior as a competition between the bonding equilibrium, the chemical incompatibility of the
two species and the translational entropy loss upon forming a diblock copolymer.

I. INTRODUCTION

Supramolecular polymer systems consist of polymers
with one or more bonding groups that can each form a
reversible linkage of precise functionality with another
bonding group. For example, Sijbesma, Meijer and co-
workers synthesized short telechelic polymers capped on
each end with a bonding group[1]. In solution, these poly-
mers bonded together to form long linear supramolecular
chains. The reversible nature of the bonding reaction im-
plies that temperature can be used to control the average
length of the supramolecular polymers and hence bulk
solution properties such as the viscosity. While Meijer’s
group used reversibly bonding units possessing four ad-
jacent hydrogen bonds, other routes to supramolecular
polymers have employed a single hydrogen bond coupled
with an ionic interaction[2], metal ligand complexes[3],
DNA base pairing[4], and host-guest interactions[5] as
the reversible bond. Moreover, this assortment of bond-
ing groups has allowed researchers to use two distinct,
non-interacting bonding groups in the same polymer sys-
tem as an “orthogonal” approach to new materials[6].
Potential applications for these materials include bio-
sensors and light harvesting complexes for solar cells.

We are primarily interested in multi-component
supramolecular polymer systems capable of forming inho-

mogeneous phases. The work of Ruokolainen et al. exem-
plifies both the interesting physics and the potential ap-
plications of inhomogeneous supramolecular polymers[2].
Firstly, they synthesized a graft copolymer system in
which end-functionalized A polymers could reversibly
bond anywhere along the backbone of B polymers. This

system exhibited re-entrant behavior, as they observed
transitions from a two phase macrophase separated re-
gion to a one phase disordered region and back to a two
phase region as temperature increased. Then they re-
placed the B polymer with a BC diblock copolymer in
which the A polymers could only graft to the B block, and
this three component system formed both lamellar and
cylindrical morphologies. Moreover, the electrical con-
ductivity of this material showed a large peak as a func-
tion of temperature due to the changing morphology, an-
other example of the ability to control material properties
with temperature. While this system employed a single
hydrogen bond with an ionic interaction as the reversible
bond, other examples of inhomogeneous supramolecular
polymers have used metal ligand complexes[3] and a se-
ries of four adjacent hydrogen bonds[7].

Due to the large parameter space that characterizes
the polymer architectures and molecular weights, chem-
ical incompatibilities of different species and bonding
strengths possible in multi-component supramolecular
polymer systems, theory will undoubtedly play an im-
portant role in designing these materials. Tanaka and co-
workers pioneered this effort by considering A and B ho-
mopolymers that could form a diblock copolymer[8], the
system illustrated in Fig 1. They used the random phase
approximation to study microphase and macrophase sep-
aration transitions in this system of supramolecular di-
block copolymers (SDC). Subsequent work by the same
group employed similar theoretical methods to investi-
gate the two component graft copolymer system studied
experimentally by Ruokolainen and co-workers[9]. The
group of ten Brinke employed Monte Carlo simulations to
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study the inhomogeneous phase behavior of supramolec-
ular diblock copolymers[10] and graft copolymers[11].
More recent work by ten Brinke and co-workers has
advanced the theoretical methods in analyzing graft
and diblock copolymer systems in the weak segregation
regime[12].

Despite the success of this theoretical work, it is desir-
able to go beyond the weak segregation regime and apply
numerical self-consistent field theory (SCFT) to investi-
gate supramolecular polymers at arbitrary segregation
strengths. The formalism of ten Brinke and coworkers,
which is framed in the canonical ensemble and imposes
binding equilibrium using an approximation that dete-
riorates at higher segregation strength, is not easily ex-
tended to numerical SCFT. Therefore, an important as-
pect of the present paper is recasting the field-theoretic
description of supramolecular polymers into a form where
the conditions of bonding equilibrium are exact at all seg-
regation strengths. This versatile framework can be used
to investigate the self-assembly of broad classes of inho-
mogeneous supramolecular polymers. While the mean-
field approximation (SCFT) is applied in the present
work, we emphasize that our theoretical framework does
not rely on this approximation and more general field-
theoretic simulation techniques[13, 14] could be applied.

Here we consider a SDC model in which reversible
bonds only result in diblock copolymers, the situation
depicted in Fig. 1. This case of hetero-complementary

binding occurs experimentally when the bonding groups
on the A homopolymers can only bind to the groups on
the B homopolymers. It is straightforward to general-
ize to the case in which one or both homopolymers have
self-complementary bonding groups so that pairs of ho-
mopolymers can link together. We formulate our SDC
model in the grand canonical ensemble, the most natural
way to describe a chemically reacting system. The model
employs continuous Gaussian chains, characterizes the
chemical incompatibility of the two species with a Flory-
Huggins parameter χ and prescribes a free energy change
upon linking A and B homopolymers to form a diblock
copolymer. Our numerical results for a symmetric sys-
tem with A and B homopolymers of the same length and
volume fraction show inhomogeneous re-entrant behav-
ior in which a lamellar phase disappears with decreasing
temperature but then re-appears at a lower temperature.

This paper has the following organization. Section II
formulates the field-theoretic model in the grand canon-
ical ensemble. We outline our methods for calculating
phase diagrams in section III, while section IV displays
the resulting phase diagrams and discusses the re-entrant
behavior. We conclude in section V by discussing the re-
lationship of this theoretical work with experiments.

FIG. 1: A supramolecular diblock copolymer system in which
terminal hetero-complementary bonding groups on A and B
homopolymers can reversibly bind to form an AB diblock
copolymer.

II. MODEL DEVELOPMENT

Our supramolecular diblock copolymers (SDC) model
consists of an incompressible melt of n0

K original ho-
mopolymers of length NK forK = A,B contained within
a volume V . The hetero-complementary bonding groups
at one end of each A and B homopolymer allow two ho-
mopolymers of different species to form an AB diblock
copolymer of length N ≡ NA + NB. The generalization
of our formalism to self-complementary bonding groups
is straightforward. The chemical equilibrium for this
bonding reaction determines nAB, the number of diblock
copolymers. Our coarse grained model for this reaction
assumes a free energy change Fb upon forming a diblock
copolymer that accounts for the microscopic details of
joining two terminal bonding groups. In general, Fb has
an energetic and entropic contribution, and we emphasize
that Fb only reflects the formation free energy of a bond
between two functional groups in close proximity. Larger
scale energetic and entropic effects associated with, e.g.,
differences in conformational properties and translational
entropies of reactants (homopolymers) and products (di-
blocks) are explicitly accounted for in the model. For
simplicity, we express Fb and all subsequent energies in
units of kT .

We assume flexible polymers and apply a continuous
Gaussian chain model so that RiK(s) denotes a con-
tour point s ∈ [0, NK ] on a space curve RiK for chain
i = 1, 2, . . . , n0

K of species K = A,B. The harmonic
stretching energy for one polymer chain is

U0[RiK ] =
3

2b2

∫ NK

0

∣

∣

∣

∣

dRiK(s)

ds

∣

∣

∣

∣

2

ds (1)

where b is the statistical segment length, taken to be
the same for both polymer species. The total stretching
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energy for this system (prior to allowing any reaction) is

U0[RA,RB] =
∑

K=A,B

n0
K
∑

i=1

U0[RiK ] (2)

where RK for K = A,B denotes the set of space curves
RiK for i = 1 . . . n0

K . We model attractive interac-
tions among segments of the same species through the
quadratic interaction

U1[RA,RB] = v0χ

∫

ρ̂A(r)ρ̂B(r)dr (3)

where χ is the A-B Flory interaction parameter, mi-
croscopic segment densities are defined by ρ̂K(r) =
∑n0

K

i=1

∫ NK

0 δ(r − RiK(s))ds and v0 is a common seg-
ment volume for both species. To capture repulsive
interactions among polymer segments, we assume in-
compressible melt conditions which fixes the density at
ρ0 = ρ̂A(r) + ρ̂B(r) = v−1

0 for each point r.
We formulate the equilibrium statistical mechanics of

this model in the grand canonical ensemble for fixed ac-
tivity of the A homopolymer zA, volume V and temper-
ature T . The activity zB of the B homopolymer does
not appear as an independent parameter because the in-
compressibility constraint fixes the total number of seg-
ments in the system. Moreover, no independent activity
zAB is present for the diblock species because, as dis-
cussed further below, reaction equilibrium provides an
independent condition that relates the chemical poten-
tials (and thus activities) of the reactants and products.
The detailed description of the model and conversion to
field-theoretic form by means of a Hubbard-Stratonovich-
Edwards transformation are given in Appendix A1. The
grand canonical partition function

Ξ(zA, V, T ) =

∫

DW± e−H[W±] (4)

is expressed as a functional integral over fields W±(x),
which denote fluctuating potential fields W+(x) and
W−(x) conjugate to the linear combination of densities
(ρA(x)+ ρB(x))/N and (ρA(x)− ρB(x))/N respectively.
The effective Hamiltonian is

H[W±]N

ρ0V
(5)

=
1

χNV̄

∫

W−(x)2dx −
1

V̄

∫

iW+(x)dx

−zAQA[W±] −QB[W±] − zAe
−FbN−1QAB[W±],

where V̄ ≡ V/R3
g0 and x ≡ r/Rg0 are dimensionless vol-

umes and position vectors in units of Rg0 = b(N/6)1/2,
the ideal radius of gyration of a diblock copolymer.
The activity of A homopolymers, zA, has also been
non-dimensionalized in units of ρ0/N ; this is also done
implicitly in previous field-theoretic models of polymer
blends[15]. QL[W±] for L = A,B,AB is the normalized

single chain partition function for a polymer in the ex-
ternal fields W±(x). For the A species,

QA[W±] (6)

=

∫

DR1Ae
−U0[R1A]−

∫

f

0
[iW+(R1A(t)−W−(R1A(t))]dt

∫

DR1Ae−U0[R1A]

where t = s/N and f ≡ NA/N is the volume fraction of
the A block of each diblock copolymer. Similar expres-
sions can be written for the diblock copolymer and B
homopolymer. The factor N−1 that multiplies QAB[W±]
in eq. 5 results from the decreasing number of bonding
groups available to form diblock copolymers with increas-
ing N ; the concentration of these groups scales as N−1 in
an incompressible melt. This is a distinguishing feature
of chemically reacting systems and leads to a model de-
pendence on both χN and N , unlike the typical case of
non-reacting block copolymers and blends[14]. We dis-
cuss this point further in section III and appendix A2.

Since our SDC model involves an incompressible mix-
ture of a block copolymer and two homopolymers, there
is a close relationship between the model and standard
models for ternary blends of permanently bonded AB
diblock copolymer with A and B homopolymer[16]. If
we simply replace the factor zAe

−FbN−1 that multiplies
QAB in eq. 5 with an independent diblock copolymer
activity zAB, the grand canonical description of a fixed-
bonded ternary blend is immediately recovered. For the
SDC model we can understand the particular expression
for zAB in terms of chemical equilibrium. Specifically,
the law of mass action implies that

zAB

zAzB
= Keq = e−Fb−ln N (7)

where Keq is an equilibrium constant for the binding re-
action. The factor of lnN in the exponent arises natu-
rally from the aforementioned scaling of the activities by
the average chain density ρ0/N and represents the trans-
lational entropy loss upon binding two homopolymers to
form a diblock. Since zA and zB are not independent
parameters in an incompressible model, we are free to
set zB = 1, upon which zAB = zAe

−FbN−1 and the pref-
actor of QAB in eq. 5 is obtained. At a fundamental
level, eq. 7 results from the chemical equilibrium con-
dition µAB = µA + µB relating the chemical potentials
of reactants and products. Our treatment of reaction
equilibria is therefore exact for all values of χN , while
previous theoretical treatments are limited to the weak
segregation regime [10–12]. More details concerning the
treatment of chemical equilibrium are presented in Ap-
pendix A1.

To evaluate the single chain partition functions in eq. 5,
we introduce a forward propagator q(x, t; [W±]) that sat-
isfies the modified diffusion equation

∂

∂t
q(x, t; [W±]) = ∇2q(x, t; [W±]) − ψ(x, t)q(x, t; [W±])

(8)
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with the initial condition q(x, 0; [W±]) = 1 for all x where

ψ(x, t) =

{

iW+(x) −W−(x) t ∈ (0, f)
iW+(x) +W−(x) t ∈ (f, 1)

(9)

is the external field. One can show that

QA[W±] =
1

V̄

∫

q(x, f ; [W±])dx (10)

QAB[W±] =
1

V̄

∫

q(x, 1; [W±])dx. (11)

To calculate QB[W±], we define a backward propagator
q†(x, t; [W±]) that satisfies the diffusion equation

∂

∂t
q†(x, t; [W±]) = ∇2q†(x, t; [W±])−ψ†(x, t)q†(x, t; [W±])

(12)
where

ψ†(x, t) =

{

iW+(x) +W−(x) t ∈ (0, 1 − f)
iW+(x) −W−(x) t ∈ (1 − f, 1)

(13)

with the initial condition q†(x, 0; [W±]) = 1 for all x.
Then

QB[W±] =
1

V̄

∫

q†(x, 1 − f ; [W±])dx (14)

is the single chain partition function for the B homopoly-
mer.

In this paper, we shall focus exclusively on mean-field
or saddle point solutions to the above field theoretic
model for SDC. One obtains the mean-field equations
by requiring that the effective Hamiltonian is stationary
with respect to the two fields, i.e.

N

ρ0R3
g0

∂H[W±]

∂W−(x)
(15)

=
2

χN
W−(x) − φA(x; [W±]) + φB(x; [W±]) = 0

N

ρ0R3
g0

∂H[W±]

∂iW+(x)
(16)

= −1 + φA(x; [W±]) + φB(x; [W±]) = 0

where the volume fractions ofA andB segments are given
by

φA(x; [W±]) (17)

= zA

∫ f

0

q(x, t; [W±])q(x, f − t; [W±])dt

+zAe
−Fb−ln N

∫ f

0

q(x, t; [W±])q†(x, 1 − t; [W±])dt

φB(x; [W±]) (18)

=

∫ 1−f

0

q†(x, t; [W±])q†(x, 1 − f − t; [W±])dt

+zAe
−Fb−ln N

∫ 1

f

q(x, t; [W±])q†(x, 1 − t; [W±])dt.

In these volume fraction expressions, the first and second
terms in the sum, respectively, correspond to the contri-
butions from the homopolymers and diblock copolymers.

A saddle point solution to the model corresponds to
the fields W ∗

±(x) that satisfy Eqn. 15 and 16. In general,
W ∗

±(x) are complex valued fields, but we are interested
only in physically meaningful fields that lead to real-
valued φA(x) and φB(x). Eqn. 15 immediately implies
thatW ∗

−(x) must be real for all x. Moreover, the assump-
tion that W ∗

+(x) is purely imaginary leads to real valued
q(x, t; [W±]) for all x and t and hence real valued volume
fractions. We define real valued fields P (x) ≡ iW+(x)
and E(x) ≡ W−(x), corresponding to “pressure” and
“exchange” potentials, respectively, which reduces the
search space for saddle points by a factor of one half.

III. CALCULATING PHASE DIAGRAMS

In the present work, we consider a bonding free energy
Fb = −h where h is the energy decrease upon forming
a diblock copolymer in units of the thermal energy kT .
The assumption that the binding is purely energetic im-
plies that h ∼ 1/T . We note, however, that it may be
necessary to include a bonding entropy in Fb to make
quantitative comparison with experiments. To calculate
a phase diagram for the supramolecular diblock copoly-
mer model, we compare the mean-field free energy given
in eq. 5 for various ordered and disordered phases at dif-
ferent values of zA. It is helpful to analytically compute
the free energy for the homogeneous disordered phase in
which case the fields E(x) = Eh and P (x) = Ph are
independent of x. This implies

φAh = zAfe
−(Ph−Eh)f (19)

φBh = (1 − f)e−(Ph+Eh)(1−f) (20)

φAB = zAe
−Fb−ln N−Ph−(1−2f)Eh (21)

for the volume fraction of the A homopolymer, B ho-
mopolymer, and diblock copolymer respectively. This
leads to a homogeneous free energy of

F ≡
H[W ∗

±]N

ρ0V
= χNφA(1 − φA) (22)

+

(

φA

f
− φAB

)[

ln

(

φA

f
− φAB

)

− 1

]

+

(

1 − φA

1 − f
− φAB

)[

ln

(

1 − φA

1 − f
− φAB

)

− 1

]

+φAB

(

lnφAB − 1
)

− µA
φA

f
+ φAB

(

Fb + lnN
)

−
χN

4
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and a chemical potential of

µA ≡ ln zA = ln

(

φA

f
− φAB

)

−
f

1 − f
ln

(

1 − φA

1 − f
− φAB

)

− χNf
(

2φA − 1
)

where we choose the total volume fraction of A seg-
ments contributed by A homopolymer and diblock, φA =
φAh + fφAB, and the volume fraction of diblock copoly-
mer, φAB , as the two independent compositions in this
incompressible system. The free energy in eq. 22 has the
familiar Flory form with the first four terms after the
equality corresponding to the energy and translational
entropy of a ternary blend. In addition, the terms φABFb

and φAB lnN represents the local free energy change of
the bonding groups and translational entropy loss, re-
spectively, upon forming diblock copolymers in this re-
acting system. These results are consistent with a Flory
lattice treatment for the homogeneous phase of a SDC
model[12] where the φAB lnN term arises from the con-
servation of species in the chemical reaction. However,
the final expression given by Angerman and ten Brinke is
independent of N due to a compensating − lnN term in
their bonding free energy. Since Fb corresponds to a lo-
cal interaction of bonding groups whose value should not
depend on the molecular weight of the chains to which
the groups are attached, we believe that Fb should be
independent of N . We discuss these issues further in
Appendix A2.

A “mass action” law for the homogeneous phase follows
immediately from eqs. 19, 20, and 21:

φAB

[φAh/f ][φBh/(1 − f)]
= e−Fb−ln N (23)

and expresses the chemical equilibrium of the bonding
reaction. It should be emphasized that this formula in-
volving volume fractions holds only for the homogeneous
phase, in contrast to the mass action law eq. 7 that is
exact under all conditions. We use φAh = φA − fφAB

and φBh = 1 − φA − (1 − f)φAB to solve eq. 23 for φAB

as a function of φA; substituting this result into eq. 22
gives the free energy as a function of φA. We determine
phase transitions between disordered and macrophase
separated phases from the minima of this free energy.

We first consider the parameters f = 0.5 and zA = 1
and study phases with equal numbers of A and B seg-
ments, i.e.

∫

φA(x)dx =
∫

φB(x)dx. This symmet-
ric system is analogous to the isopleth in ternary blend
systems[17], and we expect only homogeneous and lamel-
lar phases. Since the homopolymers are shorter than the
diblock copolymer in the SDC model by a factor of 2,
previous work on ternary blends suggests the existence
of an isotropic Lifshitz point at which disordered, coex-
isting homogeneous phases, and lamellar regions of the
phase diagram meet. For example, a ternary blend of
a symmetric diblock copolymer with homopolymers of
half the diblock length and a total A volume fraction of

0.5 has a mean-field Lifshitz point located at χN = 6
and φAB = 1/3. Exploiting the correspondence between
this ternary blend with covalently bonded diblock copoly-
mers and SDC with f = 0.5 and zA = 1, we use eqs. 19
and 21 to find that Fb = ln(4/3N) or h = ln(3N/4)
is the condition locating the mean-field Lifshitz point in
the SDC model. This result is also obtained by apply-
ing the random phase approximation to the SDC model
in the grand canonical ensemble; see appendix A3 for
details of this calculation. It should also be emphasized
that an isotropic Lifshitz point is present only in mean
field theory. Thermal fluctuations stabilize a bicontinu-
ous microemulsion phase in the region of this point[18].
Nonetheless, the exercise of locating the mean-field Lif-
shitz point is useful in establishing the topology of the
phase diagram as well as parameter values for which bi-
continuous morphologies are expected[19].

We use numerical self-consistent field theory (SCFT)
to evaluate the free energies of single unit cells of can-
didate inhomogeneous phases. This requires finding the
inhomogeneous real fields E∗(x) and P ∗(x) that satisfy
the mean-field equations 15 and 16. For a particular in-
homogeneous phase, we begin with fields possessing the
symmetries of the phase and solve the modified diffu-
sion equations in eq. 8 and 12 with a pseudo-spectral
algorithm[14, 20]. The segment volume fractions in eq. 17
and 18 are then evaluated by applying Simpson’s rule on
a uniform collocation grid, and the fields are updated by
a semi-implicit relaxation scheme until an error criterion
is satisfied[14, 21, 22]. We also minimize the free energy
with respect to the volume and shape of the periodic
simulation box with a variable cell shape method[14, 23].
This optimization determines the cell volume and shape
for which there is no residual internal stress. The minor
modifications needed to implement these methods in the
grand canonical ensemble are discussed in Appendix A 4.
Because we conduct our numerical SCFT calculations in
the grand canonical ensemble, the activity zA and bind-
ing energy h are manipulated parameters, while the vol-
ume fractions φA, φB, and φAB are byproducts of the
numerical procedure.

IV. RESULTS

We begin by discussing our numerical SCFT results
for symmetric supramolecular diblock copolymers (SDC)
with equal chain lengths, NA = NB = N/2 (i.e. f =
1/2), and equal volume fractions of A and B homopoly-
mers (set by choosing zA = zB = 1). In Figure 2 we
display a “universal” phase diagram expressed in the co-
ordinates of 1/(χN) and heff ≡ h− lnN . The numerical
SCFT calculation confirms the location of the Lifshitz
point at heff = ln(3/4) ≈ −0.287. For heff < ln(3/4),
macrophase separation into coexisting A-rich and B-
rich homogeneous phases is predicted upon lowering the
value of 1/χN . We note that decreasing 1/χN at fixed
heff does not correspond to decreasing temperature since
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FIG. 2: Universal mean-field phase diagram for the
supramolecular diblock copolymer model in the coordinates of
heff ≡ h−ln N versus 1/(χN) in the symmetric isopleth plane
zA/zB = 1.0 and NA = NB . Labeled phases are Dis (homo-
geneous phase), Lam (lamellar phase) and 2 phase (coexisting
A rich and B rich homogeneous phases). The solid dot de-
notes the Lifshitz point (LS). The horizontal dashed line on
the left of the diagram denotes 1/χN = 1/4, the macrophase
separation transition for a binary blend of polymers. The
horizontal dashed line on the right of the diagram signifies
1/χN ≈ 0.095, the order-disorder transition for a symmetric
diblock copolymer[24].

heff = h − lnN depends on temperature; this issue is
addressed in our subsequent phase diagrams. At such
weak bonding strengths, the diblock concentration is suf-
ficiently low that microphase separation is not possible.
In the asymptotic limit of heff → −∞ there is strictly
no diblock copolymer in the melt, so we recover the bi-
nary blend case in which macrophase separation occurs
at 1/(χN) = 1/4. As heff becomes larger than ln(3/4), a
lamellar phase emerges, and the range of 1/χN values in
which this phase is stable increases with increasing bind-
ing energy heff. Finally, the limit of a pure symmetric
diblock copolymer melt with an order-disorder transition
of 1/χN ≈ 0.095[24] is attained for heff → ∞.

While Figure 2 highlights the general features of the
phase diagram, it does not explicitly show the phase be-
havior as a function of N , the diblock copolymer length.
Moreover, it would be experimentally valuable to have a
phase diagram with a clear temperature dependence; this
is not the case in Figure 2 as both axes depend on tem-
perature. To accomplish these goals, we note that the
three relevant energies are the thermal energy kT , the
bonding energy h(kT ) and the segment-segment interac-
tion energy χN(kT ). It proves convenient to scale the
thermal and bonding energies by the interaction energy,
which implies a dimensionless temperature of 1/χN and
a dimensionless bonding energy of h/χN . Since we as-
sume that h and χ are purely enthalpic quantities, h/χN
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FIG. 3: Mean-field phase diagram for the supramolecular di-
block copolymer model with zA/zB = 1.0, and NA = NB .
Labeled phases are Dis (homogeneous disordered phase), Lam

(lamellar phase), 2 phase (coexisting A rich and B rich ho-
mogeneous phases). The values of N indicate the diblock
copolymer length. Solid dots denote Lifshitz points (LS).
The horizontal dashed line on the left of the diagram de-
notes 1/χN = 1/4, the macrophase separation transition for
a binary blend of polymers. The horizontal dashed line on
the right of the diagram signifies 1/χN ≈ 0.095, the order-
disorder transition for a symmetric diblock copolymer[24].

does not depend on temperature. In Figure 3, we have
re-plotted the symmetric phase diagram in the coordi-
nates of 1/χN versus h/χN . Each curve corresponds to
the indicated value of N , and the curve with N = 1 is
simply the universal diagram in Figure 2 plotted with a
different horizontal axis. Each vertical slice of Figure 3
shows the effect of changing temperature at a fixed ratio
of bonding to interaction energy.

Figure 3 shows that the two phase region becomes
larger with increasing N . This results from the fact that
the concentration of reactants, namely functional end
groups, scales as 1/N , so very few diblocks are formed
at large N unless the binding energy is very large. Thus
for increasing N at fixed χN , a larger bonding energy
is required to form enough diblock copolymers to induce
microphase separation. Perhaps most interesting is that
Figure 3 shows three distinct types of re-entrant behavior
in which a particular phase will disappear with decreas-
ing temperature only to re-appear at a lower tempera-
ture. Firstly, the N = 1000 case displays a sequence of
transitions from lamellar to disordered to lamellar phases
with decreasing temperature at h/χN ≈ 1.05. At slightly
larger h/χN for N = 1000, there is re-entrant behavior
among homogeneous phases involving transitions from
disordered to macrophase separated to disordered phases.
Finally, the phase diagrams forN = 1 andN = 10 show a
narrow band of thermally-induced transitions from lamel-
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FIG. 4: (a). The volume fraction of diblock copolymer for
the symmetric SDC model with h/χN = 0.1 and N = 1. (b).
The volume fraction of diblock copolymer for the symmetric
SDC model with h/χN = 1.05 and N = 1000.

lar to macrophase separated to lamellar phases. Homoge-
neous re-entrant behavior has been predicted for a SDC
model previously[12] and is a well known phenomenon
in binary mixtures of low molecular weight associating
fluids[25]. Since the re-entrant behavior in binary fluids
is understood as a result of hydrogen bonding between
molecules of different species, it is not surprising that
our SDC model shows the same behavior in the homoge-
neous regime. However, we are unaware of any previous
theoretical or experimental work on the re-appearance
of an inhomogeneous phase in a supramolecular polymer
system.

To better understand the inhomogeneous re-entrant
behavior, we consider the competition between three fac-
tors. The bonding reaction induces diblock copolymer

formation while chemical incompatibility and the trans-
lational entropy loss upon forming a diblock copolymer
favor homopolymer formation. The effect of these three
factors is most clearly seen in the behavior of the diblock
copolymer volume fraction as a function of temperature
in the re-entrant regime. Figure 4a displays this infor-
mation for N = 1 and a fixed value of h/χN = 0.1.
Starting in the high temperature (large 1/χN) disor-
dered phase, we see that the diblock volume fraction ini-
tially rises upon cooling since the binding equilibrium
is shifted to more copolymer product. However, once
the ODT occurs and a lamellar phase is formed, the mi-
crophase separation physically separates the reactants in
space, which in turn shifts the equilibrium back to ho-
mopolymers. Thus the diblock fraction decreases with
decreasing 1/χN . Eventually there is not enough di-
block to maintain the mesophase and the system breaks
into two coexisting macrophases to maximize transla-
tional entropy of the polymers. Once this occurs, there
is an even more substantial physical separation of ho-
mopolymer reactants and the copolymer fraction drops
precipitously. Finally, upon cooling to very low temper-
atures, at which point the importance of translational
entropy diminishes, the systems seeks an energy mini-
mum by forming diblock copolymers and hence a lamel-
lar phase. This complicated non-monotonic behavior of
the copolymer volume fraction is apparently a ubiquitous
feature of SDC systems at very low molecular weight.

In Figure 4b, we show the behavior of the diblock vol-
ume fraction for a more realistic N = 1000 case and fixed
h/χN = 1.05. Here, a larger value of h/χN is required
to overcome the low concentration (∼ 1/N) of reactant
end groups and produce enough copolymer to form a
lamellar phase. In this regime, however, the chemical in-
compatibility plays a less significant role and the diblock
copolymer volume fraction increases monotonically with
decreasing temperature. The large bonding energy cre-
ates enough copolymer to stabilize against macrophase
separation as the temperature is lowered, so the interme-
diate phase separating the two occurrences of the lamel-
lar phase is disordered. In reality, with thermal fluctua-
tions accounted for, we would expect much of the region
surrounding the intermediate disordered phase to be re-
placed with a bicontinuous microemulsion.

To gain some insight into the asymmetric case when
the total volume fractions of A and B polymer segments
are not equal, we show the phase diagram for zA/zB = 2,
f = 0.5 (NA = NB), and N = 100 in Figures 5a and 5b.
With increasing bonding strength at a fixed temperature
1/χN < 0.102, Figure 5a shows that the system passes
through disordered, body-centered cubic spheres (space
group Im3mII), hexagonally packed cylinders, bicontin-
uous gyroid (Ia3dII), and lamellar phases. The double
diamond phase (Pn3mII) is not stable anywhere in the
phase diagram. Since zA > zB, the disordered phase
is enriched in the A species. Larger bonding energies
favor the formation of diblock copolymers, which pulls
more B chains into the system from the reservoir and de-
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FIG. 5: Mean-field phase diagram for an asymmetric
supramolecular diblock copolymer at zA/zB = 2.0, NA = NB ,
and N = 100. Labeled phases are Dis (A rich homoge-
neous phase), BCCII (inverted BCC spheres), HexII (inverted
hexagonal cylinders), Ia3dII (inverted bicontinuous double gy-
roid), Lam (lamellar). (a). Mean-field phase diagram in the
coordinates 1/χN and h/χN . There is no Lifshitz point. (b).
The phase diagram is superimposed on the symmetric phase
diagram with zA/zB = 1 (dotted line) for comparison.

creases the total volume fraction of the A species. This
is analogous to moving from f = 1 to f = 0.5 in the or-
dered region of the diblock copolymer phase diagram[26],
and we observe the same sequence of phases in both
diblock copolymers and supramolecular diblock copoly-
mers. Moreover, theoretical studies of ternary blends
of A and B homopolymer with symmetric AB diblock
copolymer also show the same sequence of phases when
increasing the volume fraction of diblock copolymers[16].
In Figure 5b, we superimpose the zA = 2 phase dia-
gram on the zA = 1 diagram, which shows that higher
bonding energies are required to access the ordered re-

gion in asymmetric systems. While these results shed
light on systems with unequal volume fractions of A and
B species, it would be difficult to compare the phases
diagrams in Figure 5 with experiments since φA is not
constant throughout the diagram.

V. CONCLUSIONS AND OUTLOOK

In the present paper we formulated a simple field-
theoretic model for a melt of supramolecular diblock
copolymers (SDC) in which end-functional A and B ho-
mopolymers can reversibly bond to form diblock copoly-
mers. In this coarse-grained model, a free energy of bond-
ing governs the tendency for dissimilar homopolymers to
form a diblock copolymer. The formalism is developed in
the grand canonical ensemble, the natural ensemble for
reacting systems, and is fully consistent with the princi-
ples of chemical and reaction equilibrium. Unlike models
for non-reacting two component polymer melts, both χN
and N , where χ is the Flory interaction parameter and
N is the length of the diblock copolymer, influence the
phase behavior of the reacting system. The parameter N
appears independently of χN in the formalism because
one end segment of each homopolymer differs from the
other segments in that it can react in a specific, hetero-
complementary fashion to form diblocks. The theoret-
ical approach is generalizable to other supramolecular
architectures such as the three component graft copoly-
mers discussed in the introduction[2], SDC with homo-
complementary bonding in tandem with hetero-bonding,
and supramolecular polymers that have more than one
bonding group per polymer chain.

Using numerical self-consistent field theory, we pre-
sented a mean-field phase diagram for a system in which
the A and B homopolymers have equal lengths and
are present at equal volume fractions. There are sev-
eral instances of re-entrant thermal behavior in which
a phase disappears with decreasing temperature only to
re-appear at a lower temperature. While previous stud-
ies of supramolecular diblock copolymer models have re-
ported re-entrant behavior involving homogeneous disor-
dered and macrophase separated phases, our numerical
mean-field calculations also predict inhomogeneous re-
entrant behavior involving a lamellar phase. Depending
on the choice of parameters, the intermediate phase be-
tween the high and low temperature lamellar phase is
either disordered or macrophase separated. The topol-
ogy of the phase diagram results from a delicate balance
between bonding free energy, chemical incompatibility
and the translational entropy loss upon forming diblock
copolymers.

We are keenly interested in relating our theoretical
work to experiments. While previous experiments have
shown homogeneous re-entrant behavior in a supramolec-
ular graft copolymer system[2] and thermal control
of the microdomain period in supramolecular triblock
copolymers[27], we are unaware of any experiments that
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have systematically explored the phase diagram of SDC.
The design of an experimental system for exploring the
most interesting regions of the phase diagram requires a
careful choice of chemistry for both the bonding groups
as well as base polymer components. In the symmetric
case of equal volume fractions and chain lengths, different
regions of the phase diagram in Figure 3 can be accessed
by fixing the chemistry of the bonding group and varying
polymer length. Our formalism also provides a frame-
work for the more tedious calculation of phase diagrams
at fixed total volume fraction of the A species rather
than an activity zA. This type of temperature-volume
fraction phase diagram can be accessed experimentally
by simply blending the appropriate amounts of the two
homopolymers. Finally, we note that experimental work
on inhomogeneous supramolecular systems has shown the
propensity for bonding groups to aggregate[7]. It may
therefore be necessary to account for such effects by in-
cluding additional interaction terms in our field-theoretic
models.
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APPENDIX A: APPENDIX

1. Derivation of Model

In this derivation, we use the subscript L to denote a
quantity that applies to the A and B homopolymers and
the AB diblock copolymer. For example, NL denotes the
length of the polymer for the three species. With the def-
initions given in section II, the grand canonical partition
function as a function of µA and µB, the chemical poten-
tial of the original A and B homopolymers respectively,
is

Ξ(µA, µB, V, T ) (A1)

=

∞
∑

n0
A

,n0
B

=1

1

n0
A!n0

B!

M(n0
A,n0

B)
∑

nAB=0

∫

DRADRB

×D(nAB; [RA,RB])C({n0
A, n

0
B}, nAB)

×δ (ρ0 − ρ̂A(r) − ρ̂B(r)) λ
−3(n0

ANA+n0
BNB)

T

×e−U0[RA,RB]−U1[RA,RB ]+µAn0
A+µBn0

B−FbnAB

where M(a, b) denotes the minimum of a and b, δ(ρ0 −
ρ̂A(r) − ρ̂B(r)) enforces incompressibility and

DRADRB ≡

n0
A
∏

i=1

DRiA

n0
B
∏

j=1

DRjB (A2)

denotes a functional integration over the space curves of
the polymers. Also, C({n0

A, n
0
B}, nAB) is a combinatorial

factor

C({n0
A, n

0
B}, nAB) =

n0
A!n0

B!

nA!nB!nAB!
(A3)

that gives the number of ways in which n0
A and n0

B

distinguishable homopolymers of species A and B can
form nAB indistinguishable diblock copolymers, and
D(nAB; [RA,RB]) ≡

∏nAB

i=1 δ(RiA(NA)−RiB(NB)) stip-
ulates that the first nAB homopolymers of each species
form diblock copolymers. We write the configura-
tional integral for one possible arrangement of homopoly-
mers into diblock copolymers and then multiply by
C({n0

A, n
0
B}, nAB) to account for all ways in which ho-

mopolymers can link together to form nAB copolymers.
In this derivation, it will be convenient to regularize the
field theory and represent each space curve as a discrete
set of beads connected by harmonic springs, known as
the discrete Gaussian chain model[14]. Each functional
integral DRiK for K = A,B becomes the product of NK

integrations over a position vector. If we assume each
bead has the same mass, λT is the thermal wavelength
that results from a one dimensional momentum integra-
tion.

For any state with n0
A and n0

B original polymers, the
chemical reaction to form a diblock copolymer implies
n0

K = nK + nAB where nK is the number of free ho-
mopolymer for K = A,B. Then

eµAn0
A+µBn0

B = eµAnA+µBnB+(µA+µB)nAB (A4)

gives µAB = µA + µB, the criteria for chemical equilib-
rium. Moreover, the value of one chemical potential is
arbitrary in an incompressible system. To show this, we
first obtain

eµAn0
A+µBn0

B = e[µA−µBf/(1−f)]n0
AeµB(n0

Af/(1−f)+n0
B)

(A5)
by adding and subtracting µBn

0
Af/(1−f) from the argu-

ment of the exponential. Incompressibility implies that

eµB(n0
Af/(1−f)+n0

B) = eµBρ0V/NB is constant. Then only
µA − µBf/(1− f) matters in calculating averages in the
grand canonical ensemble, and we are free to choose a
convenient value of µB that simplifies our formulas.

To make the partition function in eq. A1 more man-
ageable, we first note the equivalence of the following two
summations

∞
∑

n0
A

,n0
B

=0

M(n0
A,n0

B)
∑

nAB=0

↔

∞
∑

nA,nB ,nAB=0

(A6)
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which follows from the chemical reaction constraint
n0

K = nK + nAB for K = A,B. With the definition
ρ̂±(r) ≡ ρ̂A(r) ± ρ̂B(r), we substitute ρ̂A(r)ρ̂B(r) =
(ρ̂+(r)2 − ρ̂−(r)2)/4 = (ρ2

0 − ρ̂−(r)2)/4 and the inte-
gral representation of a delta function δ(ρ0 − ρ̂+(r)) =
∫

Dw+e
i
∫

drw+(r)(ρ0−ρ̂+(r)) into eq. A1 and perform a
Hubbard-Stratonovich transformation to obtain

Ξ(µA, µB , V, T ) (A7)

=

∞
∑

nA,nB ,nAB=0

1

nA!nB!nAB!

×

∫

Dw±e
−ρ0χ−1

∫

w−(r)2dr+iρ0

∫

w+(r)dr

×

(

eµA
Q0

A

λ3NA

T

QA[w±]

)nA
(

eµB
Q0

B

λ3NB

T

QB[w±]

)nB

×

(

eµA+µB−Fb
Q0

AB

λ3N
T

QAB[w±]

)nAB

.

Here, (nA!nB!nAB!)−1 accounts for the indistinguisha-
bility of the polymers of each species, and w+(r) and
w−(r) are the chemical potential fields conjugate to the
ρ̂+(r) and ρ̂−(r) densities respectively. Also, QL[w±]
is the normalized single chain partition function in ex-
ternal fields (see eq. 6 for QA), and Q0

L is the unnor-
malized single chain partition function in zero field. In
the thermodynamics of chemical reactions, the chemi-
cal potential can be written µL = G0

L + ln z̄L where
G0

L is the Gibbs free energy of the standard state and
z̄L is the activity. For the homopolymers, we define

z̄K ≡ eµK+ln(Q0
K/λ

3NK
T

) for K = A,B since the stan-
dard state free energy G0

K = − ln(Q0
K/λ

3NK

T ) is the
Gibbs free energy of a non-interacting one component
polymer melt[14]. For the diblock copolymer, we define

z̄AB ≡ eµAB+ln(Q0
AB/λ

3NAB
T

)−Fb so that the standard state
free energy G0

AB = − ln(Q0
AB/λ

3NAB

T ) + Fb accounts for
the microscopic details of bond formation. The quantity
Q0

L/λ
3NL

T is dimensionless since Q0
L is the product of NL

integrals over the position vectors of the monomers in the
regularized field theory. For our model of supramolecular
diblock copolymers, the chemical equilibrium condition
µAB = µA + µB implies

z̄AB

z̄Az̄B
= e−∆G0

(A8)

the law of mass action where ∆G0 ≡ G0
AB −G0

A −G0
B is

the free energy difference of the standard states.
Performing the summation over the number of poly-

mers of each species in eq. A7 leads to

Ξ(µA, µB, V, T ) =

∫

Dw±e
−H[w±] (A9)

where

H[w±] = ρ0χ
−1

∫

w−(r)2dr − ρ0

∫

iw+(r)dr

−z̄AQA[w±] − z̄BQB[w±] − z̄ABQAB[w±] (A10)

is the effective Hamiltonian. Each term in H[w±] scales
linearly with volume, since z̄L is proportional to Q0

L

which can be expressed as Q0
L = V gNL−1

M where gM is
a monomer volume independent of N . In the discrete
bead-spring model, gM = (2πb2/3)3/2. This implies that
(eµL/gM )(gMλ−3

T )NL is an activity with units of inverse
volume, so then

zL ≡
eµL

gMρ0
N
(

gMλ−3
T

)NL

(A11)

is the dimensionless activity in units of ρ0/N . We choose
µB such that zB = 1. With these new definitions, the
law of mass action is

zAB = zAe
−Fb

ρ0gM

N
, (A12)

and we absorb ρ0gM = eln ρ0gM into the definition of the
bonding free energy. The effective Hamiltonian becomes

H[w±] = ρ0χ
−1

∫

w−(r)2dr − ρ0

∫

iw+(r)dr (A13)

−
ρ0V

N

(

zAQA[w±] +QB[w±] + zAe
−Fb

1

N
QAB[w±]

)

After inserting the scaled vectors x = r/R3
g0 and fields

W±(x) = Nw±(x) into eq. A10, we obtain eq. 5. This
derivation is similar to a theoretical approach that two
of us applied to equilibrium polymers with excluded
volume[28].

2. Bonding Free Energy

A more general free energy of bonding Fb = −h+ ln q
incorporates an entropy of bonding ln q. This entropy
arises from the assumption that two bonding groups must
be oriented as well as localized in space for bonding to oc-
cur. Then q is the extra number of orientational degrees
of freedom associated with two bonding groups in the un-
bonded state compared to the bonded state. With this
free energy, the effective diblock copolymer activity that
multiplies QAB[W±] in eq. 5 can be written zAe

h−ln qN ,
so the explicit dependence on N can be viewed as part
of an effective entropy of bonding.

We now relate this effective bonding free energy with
the previous work of Angerman and ten Brinke[12]. In
their Flory lattice model, each monomer that lies on a
lattice site corresponds to l Kuhn segments of the ac-
tual polymer. This choice of l is arbitrary but must be
large enough so that end-to-end distance of l Kuhn seg-
ments exhibits random walk statistics. For clarity, we
define KA as N from this previous work[12], and KA is
the number of lattice monomers in an A homopolymer.
Then KA and l are artificial terms that arise due to the
underlying lattice used in the derivation, but the physical
quantityKAl is the number of Kuhn segments comprising
an A homopolymer, or NA in the present work. Follow-
ing Angerman and ten Brinke[12], the dimensionless free
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energy change due to the loss of orientational and trans-
lational degrees of freedom in the bonding monomer is
(ln ql). As a clever reviewer pointed out to us, the proper
way to remove the artificial terms is

ln ql = ln qlKA − lnKA = ln qNA − lnKA (A14)

where − lnKA is the negative of a term from a different
part of the free energy. For the total free energy, this
analysis results in substituting (ln qNA) for (ln q) in eq.
23 of Ref.[12]; the free energy remains independent of l
and KA. Hence, a Flory lattice treatment also implies a
factor of N in an effective entropy of bonding. While this
lattice treatment gives a term ln(qN/2), the factor of 1/2
is inconsequential since we view q as a phenomenological
parameter.

A recent experimental paper on supramolecular ABA
triblock copolymers[27] employed a weak segregation
theory[29] analogous to Ref.[12] to analyze their data.
Their fitted value of q ≈ 106 greatly differs from the pre-
vious expectation q ≈ 102[12]. Assuming the weak seg-
regation approximation is valid in understanding these
experiments, the fitted value of q most likely reflects the
product qN . This is consistent with the theoretical anal-
ysis in this work.

3. Random Phase Approximation

To derive the random phase approximation for
supramolecular diblock copolymers, we use a weak in-
homogeneity expansion[14] in the fields WA(x) ≡ E(x)−
P (x) and WB(x) ≡ E(x) + P (x) that act on the A and
B species respectively. If we write the fields as WI(x) ≡
W̄I + ΩI(x) for I = A,B where W̄I = V̄ −1

∫

WI(x)dx is
the average value of the field and ΩI(x) represents the in-
homogeneous contribution, then the density-density cor-
relation function is

SIJ(x,x′) =
ρ0V

N
N2

(

zA
δ2QA[WA]

δΩI(x)δΩJ (x)

+
δ2QB[WB]

δΩI(x)δΩJ (x)
+ zAe

−Fb−ln N δ
2QAB[WA,WB]

δΩI(x)δΩJ (x)

)

where I and J can be A or B. The functional derivatives
are evaluated to zeroth order in the fields ΩA and ΩB; in
Fourier space, this gives

SAA(x) = zAe
−W̄AfNg(x, f) (A15)

+zAe
−Fb−ln N−W̄Af−W̄B(1−f)Ng(x, f)

SBB(x) = e−W̄B(1−f)Ng(x, 1 − f) (A16)

+zAe
−Fb−lnN−W̄Af−W̄B(1−f)Ng(x, 1 − f)

SAB(x) = zAe
−Fb−ln N−W̄Af−W̄B(1−f)× (A17)

N
1

2

(

g(x, 1) − g(x, f) − g(x, 1 − f)
)

where the Debye function is

g(x, f) =
2

x2

(

fx− 1 + e−fx
)

(A18)

and x ≡ q2R2
g0. From the work of Leibler[24], the sec-

ond order vertex function for a polymer system with two
species is

γ2(x) =
S(x)

W (x)
− 2χ (A19)

where

S(x) = SAA(x) + 2SAB(x) + SBB(x) (A20)

W (x) = SAA(x)SBB(x) − SAB(x)2. (A21)

The conditions γ2(0) = 0 and dγ2(0)/dx = 0 give the
location of the Lifshitz point. For f = 0.5 and zA = 1,
it is straightforward to show that χN = 6, W̄A = W̄B =
ln(9/4) and Fb = ln(4/3N) corresponds to the Lifshitz
point. Moreover, the comparison of eq. A15 to A17 with
eq. 19a-c in previous work on ternary blends[17] shows
that our analysis in section III gives the same result.

4. Variable Cell Shape Method

The cell shape in our simulation is defined by the 3×3
matrix h in which the columns are the vectors that define
a parallelepiped cell[14]. Each component of the matrix
h is a length in units of Rg0. For any given fields, the
cell shape is updated according to

hi+1 = hi − λhh
i

×
(

Σ
Ah

[WA, h
i] + Σ

Bh
[WB, h

i] + Σ
AB

[WA,WB, h
i]
)

where λh > 0 is a relaxation parameter and

Σ
Ah

[WA, g] = 2zA

∫

dX

∫ f

0

dt

×q(X, t)g−1∇X∇Xg
−1q(X, f − t)

Σ
Bh

[WB , g] = 2

∫

dX

∫ 1−f

0

dt

×q†(X, t)g−1∇X∇Xg
−1q†(X, 1 − f − t)

Σ
c
[WA,WB, g] = 2zAe

−Fb−lnN

×

∫

dX

∫ 1

0

dt q(X, t) g−1∇X∇X g−1q(X, 1 − t)

are the internal stresses of the A homopolymer, B ho-
mopolymer and diblock copolymer respectively in the
grand canonical ensemble. Here, g ≡ hTh and X is a

position vector whose components lie in the interval [0, 1]
such that the original Cartesian coordinates are x = h·X.
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