Introduction to Self-Consistent
Field Theory Calculations
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Justin Virgili’'s quals talk:

Block copolymer self-assembly
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Fig. |. Diblock copolymers are predicted to self-assemble according to a phase diagram predicted by self-consistent mean
field theory (a) and proven experimentally (b). A variety of constant-radius geometries are observed as a function of relative
lengths of the two blocks (¢). Reproduced with permission from Physics Today (2].

What is this SCFT that we compare with experiments?



Rod-Coil Block Copolymers are Inhomogeneous

EE——
100 nm




Field-T heoretic Model for Polymers

coarse grain model for polymers as continuous space curves

interested in meso-scale behavior

R(N)

R(s) is a measure of chain stretching



Model for Homopolymers in Good Solvent: RN)

e Gibbs told us that the probability of a state is proportional to exp(—8E(x))
where 8 = 1/(kT) and E(x) is the energy of state z

e continuous Gaussian chain model
Z(n,V,T) = / DR exp (—BU[R"] — UL [R™])

where R™ = Ri1(s),R2(s)...R,(s) denote the space curves of the n
polymers

e first energetic contribution comes from stretching of each chain
3T Y. 5

this is Gaussian in the variable R(s)



Model for Homopolymers in Good Solvent: /

Z(n, V. T) = / DR exp (—BUo[R"] — UL [R™])

e second energy contribution comes from the effective repulsion of
polymer segments in good solvent

e if the density from the polymers is
n N
p)=3" [ 8~ Ri(s))ds
i=1 70
then the repulsion between chains is

(1 [R"] = / drdr’p(r)u(fr — v'[)p(r')

e assume a delta function interaction
u(|r —r'|) = ETuod(r —r’)

so the interaction energy becomes

BUIRY) = - [ dedi'B(e)ue — v)B0) = uo [ drp(x)?



Model for Homopolymers in Good Solvent:

R(N)

e partition function becomes

n_ N
Z(n,V,T) = /DR" exp (—2%922/0 IR;(s)|ds —uo/ﬁ(r)zdr>
i=1



Particle to Field Transformation

w(r)

w(r) is a field conjugate to the density; in general, this is a complex field
Z(n,V,T) = /DweH[w]

Hlw+] = Qiu()/w(r)er —nln Q[iw]

math involves doing Gaussian integrals



Single Chain Partition Function

Hlw+] = QL’U,O w(r)?dr — nIn Qiw]

e to determine the single chain partition function Q[:w] for an arbitrary
field w(r), we solve for a propagator that satisfies a modified diffusion
equation:

0 b2

(x5 iw]) = = V2q(r, 5 [iw]) — i@, 5 iw])

for the initial condition ¢(r,0; [iw]) = 1
e one can show that

.1 .
Qiw] = V/Q(F’N’ [tw])dr

n

N
VQ[iw]/o q(r,s; [iw])q(r, s; [iw])ds

is the density of the polymers in an external field w(r)

p(r; [iw]) =

e solving for q(r, s; [iw]) is the majority of computational work



One Dimensional Example

012 i+l n-1

vector r becomes scalar r

represent continuous periodic function by discretizing the
interval

w(r), q(r,2;[iw]), p(r;[iw]) are all functions which are
discretized
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One Dimensional Example continued

I

field ——

0
0s

(s [iw]) =

b2

where iw(r) is the field above

V2q(r, s; [iw]) — dw(r)q(r, s; [iw])

10



Results for sample potential
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field =———
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end propagator «------
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end propagator is g(r, N), the probability density for the end of the chain

this is obtained by solving the modified diffusion equation



Mean-Field Equations
Z(n,V,T) = / DweHwl

Hlw+] = Qiu()/w(r)er —nin Qiw]

e instead of attempting to calculate the integral over w(r), we invoke
the mean-field approximation asks for the one field w*(r) that mini-

mizes H[w]
OH [tw] _ dw(r)
diw(r) uQ

+ p(r; [iw]) =0

. n N : .
p(r; [iw]) = W/O q(r, s; [iw])q(x, s; [iw])ds

e for this model of homopolymer in good solvent, the mean-field so-
lution is

w*(r) = —iugpo
where po = nN/V is the average density of polymers

— this solution does not depend on r, so it is homogeneous

— this solution is an imaginary number



Model for Coil-Coil Diblock Copolymer:

/W

e continuous Gaussian chain model

Z(n,V,T) = /DR”5(5A(I‘) + pp(r) — po) exp (—BUL[R"] — BUL[R"])

3kT [V . 5
Uo[R"] = —= R; d
o= 55 [ ) s

(h[R"] = / drdr'pa(r)u(r — ')ps(r') = pg XkT / drpa(r)ps(r)

n fN
pa) =3 [ 8- Ru(e))ds
i=170
where f is volume fraction of A block
e Y is Flory-Huggins parameter in units of kT

e new physics is the density is fixed at pg for each r



Particle to Field Transformation

w(r)

Z(n,V,T) = / Duw e~ Hlw=]

Hlwy] = %O/w_(r)?dr _ pO/iw+(r)dr — nInQlw]



Single Chain Partition Function
Hlws] = %/w_(r)zdr—po/iw+(r)dr—nln Qlw+]

) b2

aq(r, S, [’w:t]) = EVQQ(ra S, [w:lz]) — w(ra S)(](I’, S, [w:l:])

oy iwy (r) —w_(r) se(0,f[)
Y(r, s) { 2w+(r)—|—w_(r) se(f,1)

Qlwsl =+ [ o(r, N; [wal)dr

e partition function of a single chain in external fields

e use efficient method for calculating q(r, s)



Mean-Field Equations

— P w_(r)3dr — wo (r)dr — n w
H[wi]—X/Ud Po/ +(©)dr — nn Qlws]

(?Z’L—(UE?:U(::']) = pa(r; [we]) + pp(r; [we]) — po =0
(;ZEIE:)] - 2Qow(r) — pa(r; [wi]) + pp(r; [ws]) =0
N
pa(r; [we]) = Q[/f)ji] /O q(r,s: [we])g'(r, N — s: [w])
PO N
pulrifwl) = Qlwx] Jyn a(r, s [we)a' (v, N = s; [ws])

o find fields w4 (x) and w_(x) that satisfy these equations

e usually work in scaled fields Wi+ = Nwt+ ~ O(1), so xN is
relevant parameter



How do we compute the mean field solution?
start with randomize fields w4 (r) and w_(r)

calculate the densities and subsequently mean-field equations:

OH [w+]

Siw (1) = pa(r; [ws]) + pB(r; [w+]) — po

OH [w+] _ %w_(r) — pa(r; [we]) 4+ pp(r; [wi])
dw_ (1) X

update the fields:
dH[w<]
dw4 (1)

OH[wx]
dw_(r)

w () = wl (r) + A

wTHr) = w’ (r) — A

iterate until mean-field equations are satisfied



What does this look like?

time evolution from top to bottom



Closer look at Lamellar Phase
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Closer look at Lamellar Phase

f=0.5 yN =20

AL
w minus
w plus

-10

2 Wo(2) — ba(e) + dpla) =0

xN
pa(z) + ¢p(z) —1=0




finally, we can understand Justin’'s slide :)

Block copolymer self-assembly
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Fig. |. Diblock copolymers are predicted to self-assemble according to a phase diagram predicted by self-consistent mean
field theory (a) and proven experimentally (b). A variety of constant-radius geometries are observed as a function of relative
lengths of the two blocks (¢). Reproduced with permission from Physics Today [2].



Newest Phase Diagram
gyroid phase persists to xN = 100;

E. Cochran et. al., Macromolecules, 39, 2449-2451.
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Grand Canonical Ensemble

1 0.
E(M? Va T) — Z eﬂnz(no Vo T)
n!

n=0
00

Z /Dwie_POX_l [w_(r)2dr+pg [iwy (r)dr+nin Qlw+] un
"n=0

_ . 1
_ /D’wie_pox 1fw_(r)er—|—pofzw_|_(1:')dlf'5 Z (e,uQ[,wj:])n

"n=0

— / Duwe—rox [ w-(r)2dr+po [ iwy (r)dr+2Q[w]

1
n!

where z = e* is the activity of the diblock copolymer

HIWa] =2 [ (0)2dr — po [ iw s ()dr — 2Qlw]



Supramolecular Diblock

Ay
il

z4, zp. activities of the two polymer species

f = N4/N: fraction of diblock that consists of A species (N is length
of diblock)

x. Flory-Huggins parameter
Fy: free energy of bonding

incompressible melt conditions



T heoretical Results

parameters: z4, f, x, and h.
X = r/Rg’O; Wi(x) = Nwi(x).

e Most natural to work in grand canonical ensemble for reacting sys-
tems; GCE partition function:

=(24,V,T) = / DW.ye HW:]

H[W] = XLN% dxW?2(x) — %/dxiW+(X)

—zae TN QUB[W] — 24Qa[W] — Qp[W]
e theory depends on both xN and N

e for each choice of parameters, there is a corresponding ternary blend
system
Jannert, Schick, Macromolecules. 30:137 , '97. 30:3916, '97.



Symmetric System: f=0.5, z4 =1

S e

e homopolymers of equal length, equal chemical potential
for both species

e expect only disordered, macrophase separation and
lamellar phases



Three energy scales in the problem
thermal energy: kT

bonding energy ~ h(kT)

chemical energy ~ xN(kT)

scale everything by chemical energy:
— dimensionless temperature = 1/xN

— dimensionless bonding energy = h/xN



Phase Diagram with Re-entrant Behavior
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Model for Rod-Coil Diblock Copolymer:

e continuous Gaussian chain model for coil A block, stiff rod for B
block

Z(n,V,T) = / DR dw6(5a(r) + 5 (r) — po)
X exp (—BUO [Rn] — BUl [Rnun] — BUQ[R”U”])
where u"” = u;...u, denotes orientation of rods

n (1-f)N
pr) =" /O 5(r — (Ro(FN) + asuy))ds

a=1

a iS a length scale associated with the rod

Us[RMu"] = — / 3,:(r) Sy (r)dr
2po
e S;; is the orientational order parameter

n o rQA-f)N y
Sii(r) = Z /O (uwua)j — 5—;)‘7)5(1:' — (Ro(fN) + asuy))ds

a=1



Rod-Coil Diblock Copolymers

e after analogous integral transformations, the partition
function is

Z(n,V,T) = / DWyDM;;e vl

H[W4]
1 .
~ N / W_(r)2dr — / W4 (r)dr — V In Q[Wx, M)

1
+2M—N / M;j(r) M;;(r)dr



Rod-Coil Diblock Copolymers in a Field

A

H[W4]

~ L/W_(r)zdr—/iW+(I‘)dI‘—V|n Q[Wi,Mij]
xN

o [ M@y~ [ dran'B@ () e - 1)

e add term to free energy that accounts for alignment of rods in field,
Ax? = X|| — XL, x are the diamagnetic suspectibilities

e but we have to solve Maxwell's equations

V><B=L

egc?
in addition to normal SCFT equations. ..

V.-B=0



more details on the theory

The

E.quilibrium Theory
of Inhomogeneous
Polymers




