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1 Introduction

We want to perform a one dimensional self-consistent field theory calculation
for a diblock copolymer. We’ll produce all the code from scratch. These notes
will assume that you know how to program in a language that can multiply
complex numbers.

2 Mean-Field Equations

For a diblock copolymer, we want to find fields E(x) and P (x) that satisfy
the mean-field equations

φA(x; [E,P ]) + φB(x; [E,P ])− 1 = 0 (1)

2

χN
E(x)− φA(x; [E,P ]) + φB(x; [E,P ]) = 0 (2)

where the volume fractions

φA(x; [E,P ]) =
1

Q[E,P ]

∫ f

0
q(x, t; [E,P ])q†(x, 1− t; [E,P ])dt (3)

φB(x; [E,P ]) =
1

Q[E,P ]

∫ 1

f
q(x, t; [E,P ])q†(x, 1− t; [E,P ])dt (4)

depend on a propagator q(x, t; [E,P ]) that satisfies

∂

∂t
q(x, t) =

∂2

∂x2
q(x, t)− ψ(x, t)q(x, t) (5)
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with the initial condition q(x, 0) = 1. The contour dependent field is ψ(x, t) =
P (x) − E(x) for t ∈ [0, f) and ψ(x, t) = P (x) + E(x) for t ∈ [f, 1]. q†(x, t)
also satisfies the diffusion equation but initial condition q†(x, 1) = 1. And
also

Q[E,P ] = L−1
∫
q(x, 1)dx (6)

where L is the length of our periodic domain in units of Rg. I’m not going
to derive these equations; we’re just going to solve them numerically.

Formally, we treat the diffusion equation as a first order linear equation
and write the solution

q(x, t) = eLtq(x, 0) (7)

where the operator is

L ≡ ∂2

∂x2
− ψ(x, t) (8)

To solve the diffusion equation numerically, we pick a small time interval ∆t
and iterate:

q(x,∆t) = eL∆tq(x, 0) (9)

If the operator L only consisted of the field ψ(x, t), then we simply multiply
q(x, 0) = 1 by eψ(x,t)∆t. If we represent the spatial domain x ∈ [0, L] as a
collection of n points, then this requires n multiplications. Not too bad. It
turns out that it’s not as easy to apply the operation e(∂

2/∂x2)∆t, meaning
that we can’t do it in n multiplications in real space. But we can do it in n
multiplications in Fourier space. That’s why we’re going to spend some time
talking about discrete Fourier series.

3 Discrete Fourier Series

The spatial domain we want to solve this diffusion equation is [0, L]. Numbers
in a computer are always dimensionless. To represent this spatial domain in
a computer, we discretize it.

xj =
jL

n
(10)

for j = 0, 1, . . . , n − 1. Consider a function f(x) on this interval; on the
discrete points, we define fj ≡ f(xj). We’re interested in periodic function,
so fj = fj+n.
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The main point of this section is that we can represent any discrete peri-
odic function as a sum over basis functions:

fj = n−1/2
n−1∑
k=0

f̂ke
i((2π/n)k)j (11)

where i =
√
−1. If αk = 2πk/n, then the basis functions are n−1/2eiαkj

for k = 0, 1, . . . , n − 1 where n−1/2 is a normalization factor. In this basis
function, j denotes the position in space, and k indexes the basis functions.
These basis functions are orthonormal. To show this, the inner product of
two basis functions is

n−1
n−1∑
j=0

eiαkje−iαlj = n−1
n−1∑
j=0

ei(2π/n)(k−l)j (12)

For k = l, each exponential is 1, so then the sum is 1. For k 6= l, the sum
over the complex exponentials amounts to

Jm ≡
n−1∑
j=0

eiαmj (13)

for m 6= 0. (think m = k− l) Orthonormality follows from Jm = 0 for m 6= 0.
The trick to showing this is multiplying by ei(2π/n)m:

Jme
i(2π/n)m =

n−1∑
j=0

ei(2π/n)mjei(2π/n)m =
n∑
l=1

ei(2π/n)ml =
n−1∑
l=0

ei(2π/n)ml = Jm

(14)
To move from the second to third expression, make the substitution l = j+1.
To move from the third to fourth expression, note that eiαmn = 1 using the
periodicity of the basis functions. For m 6= 0, ei(2π/n)m 6= 0 from which it
follows that Jm = 0.

Neat, eh? Now we can claim that

n−1
n−1∑
j=0

eiαkje−iαlj = δkl (15)

where δkl is the Kronecker delta function. Now we can use this orthogonality
and eq. 11 to claim that

f̂k = n−1/2
n−1∑
j=0

fje
−iαkj (16)
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This is a discrete Fourier transform. You can think of eq. 11 as the discrete
inverse Fourier transform. Your homework is to implement these in software.
Write a program that accepts an array of complex numbers and an integer
that represents the length of the array and outputs the discrete fourier trans-
form of the array. It will probably be easiest to forget about the factor of
n−1/2.

To develop the algorithm for solving the diffusion equation in the next
section, we’ll need the following notation

Fkj = n−1/2ei(2π/n)kj (17)

so then one can write the fourier transform of a discrete function as

f̂k =
n−1∑
j=0

Fkjfj. (18)

It is also useful to define the conjugate transpose of the previous matrix.

F †
kj = n−1/2e−i(2π/n)kj (19)

Since Fkj is symmetric, F †
kj results from simply taking the complex conjugate

of each entry of Fkj. The orthonormality of the basis function gives that this
matrix is the inverse of Fkj:

n−1∑
k=0

F †
lkFkj = δlj (20)

so then Fkj is a unitary matrix. This is useful since it provides a resolution
of the identity operator δlj.
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