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This article will focus on the single chain partition function and why it
can be computed through a solution to a modified diffusion equation. If
one looks at a paper in the literature, the single chain partition function is
defined by the functional integral

Q[w] =

∫
DRe−(3/2b2)

∫ N

0
|dR/ds|2ds−

∫
w(r)ρ(x)dx

DRe−(3/2b2)
∫ N

0
|dR/ds|2ds

(1)

Here, w(r) is the external field that could in general depend on the contour
variable s, R is the space curve that represents a single polymer, and the
density is

ρ(x) =
∫ N

0
δ(x−R(s))ds (2)

I’ve written this expression in one dimension, consistent with the calculations
that we’re interested in doing. Let’s express the contour variable s in units
of N by defining t = s/N , so then the stretching energy becomes

−
(

3

2Nb2

) ∫ 1

0

∣∣∣∣∣dRdt

∣∣∣∣∣
2

dt = −
(

1

4Rg0

)∫ 1

0

∣∣∣∣∣dRdt

∣∣∣∣∣
2

dt (3)

and the field term is

−
∫

w(r)
∫ N

0
δ(x−R(s)dsdr = −

∫ 1

0
Nw(R(t))dt (4)

After expressing the space curve in units of Rg0 through R̃ = R/Rg0, the
single chain partition function becomes

Q[W ] =

∫
DR̃e−(1/4)

∫ 1

0
|dR̃/dt|2dt−

∫ 1

0
W (R̃(t))dt

DR̃e−(1/4)
∫ 1

0
|dR̃/dt|2dt

(5)
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where we’ve used the definition of the density and performed the integration
over x and defined the scaled field W (x) = Nw(x).

Suppose that one changed the field from W (x) to W0 + W (x) where W0

is a constant. How would the value of Q[W ] change? It is straightforward to
evaluate this effect from the previous equation.

Q[W0 + W (x)] =

∫
DR̃e−(1/4)

∫ 1

0
|dR̃/dt|2dt−

∫ 1

0
[W0+W (R̃(t))]dt

DR̃e−(1/4)
∫ 1

0
|dR̃/dt|2dt

= e−W0Q[W (x)]

(6)
The constant shift in the field multiplies the single chain partition function
by a factor of e−W0 . In general, one multiplies the single chain partition
function by a factor of e−W0g where g is the range of the integration for
the scaled contour variable t. This analytic results gives us a check on our
code that solves the modified diffusion equation and calculates the single
chain partition function. If we add a constant to the field, the single chain
partition function value should change appropriately. If our code does not
give the correct value, then there’s something wrong with the code.

Now we will derive how the single chain partition function is related to the
propagator q(x, t) defined previously. To do this, we discretize the integrals
over contour variable t, defining an arbitrarily small interval ∆t. Also, we
discretize the functional integral over the space curve into N + 1 discrete
points or beads1 xi where N = (∆t)−1 is the number of intervals between the
points. ∫ 1

0

∣∣∣∣∣dR̃dt

∣∣∣∣∣
2

dt −→
N∑

i=1

(xi − xi−1)
2

∆t2
∆t (7)

∫ 1

0
W (R̃(t))dt −→

N∑
i=0

W (xi)∆t (8)

2 Then the single chain partition function becomes

Q[W ]

1We use the terminology beads here since this is closely related to bead-spring models
for polymers.

2So I’m pulling a fast one on you here since the contour integrals of the stretching term
contain N factors of ∆t and the integrals of the field contain N + 1 factors of ∆t. Since
this difference doesn’t matter as ∆t → 0, this quirk in the derivation won’t affect our final
results.
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=

∫
dx0 . . . dxNeW (x0)∆t−(4∆t)−1(x1−x0)2−W (x1)∆t−(4∆t)−1(x2−x1)2−...∫

dx0 . . . dxNe−(4∆t)−1(x1−x0)2−(4∆t)−1(x2−x1)2−...

=

∫
dx0d∆x1 . . . d∆txNeW (x0)∆t−(4∆t)−1∆x2

1−W (x1)∆t−(4∆t)−1∆x2
2−...

L
∫

d∆x1 . . . d∆xNe−(4∆t)−1
∑N

i=1
∆x2

i

After the second equality, we have made the change of variable ∆xi = xi −
xi−1 for i = 1 . . . N but kept the integration over x0. In the denominator,
we’ve explicitly done the integration over x0, which provides the L. The
numerator becomes integrals over the field terms with a Gaussian distribution
e−(4∆t)−1∆x2

i for the distance between the discrete beads, and the product
of constant terms in the denominator serve as normalization. In fact, it’s
straightforward to check that Q[0] = 1 with this normalization. Now if we
define

q(x, 0) = e−W (x)∆t (9)

as an “initial condition” and then “propagate” this along the polymer contour

q(x, ∆t) = e−W (x)∆t
∫

d∆xΦ(∆x)q(x−∆x, 0) (10)

where

Φ(∆x) =
1√

4π∆t
e−∆x2/(4∆t) (11)

is a normalized Gaussian in one dimension. In general, we have the relation

q(x, t + ∆t) = e−W (x)∆t
∫

d∆xΦ(∆x)q(x−∆x, t) (12)

Once we get to the end of the polymer contour, we get the partition function
as

Q[W ] = L−1
∫

dxq(x, 1) (13)

It is not a coincidence that q(x, t) has the same function name as the prop-
agator that satisfies the modified diffusion equation. They are the same
function. To see this, consider the relation

q(x, t + ∆t) = e−W (x)∆t
∫

d∆xΦ(∆x)q(x−∆x, t) (14)

and expand the propagator to second order in ∆x and first order in ∆t.

q(x, t + ∆t) = q(x, t) + ∆t
∂

∂t
q(x, t) + O(∆t2) (15)
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q(x−∆x, t) = q(x, t)−∆x
∂

∂x
q(x, t) +

1

2
∆x2 ∂2

∂x2
q(x, t) + O(∆x3). (16)

Then, using e−W (x)∆t = 1−W (x)∆t we obtain

q(x, t) + ∆t
∂

∂t
q(x, t)

=
(
1−W (x)∆t

) ∫
d∆xΦ(∆x)

(
1−∆x

∂

∂x
+

1

2
∆x2 ∂2

∂x2

)
q(x, t)

= q(x, t)− 〈∆x〉 ∂

∂x
q(x, t) +

1

2
〈∆x2〉 ∂2

∂x2
q(x, t)−W (x)∆tq(x, t)

+W (x)∆t〈∆x〉 ∂

∂x
q(x, t)−W (x)∆t

1

2
〈∆x2〉 ∂2

∂x2
q(x, t)

where the brackets denote averages over a Gaussian distribution

〈· · ·〉 ≡
∫
· · ·Φ(∆x)d∆x (17)

By symmetry, 〈∆x〉 = 0 and one can calculate that 〈∆x2〉 = 2∆t. With
these relations, the terms to order ∆t give the equation

∂

∂t
q(x, t) =

∂2

∂x2
q(x, t)−W (x)q(x, t). (18)

This is exactly the diffusion equation that we’ve been solving. It’s straight-
forward to extend this derivation to three dimensions.
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